Domain-invariant Representation Learning

نویسندگان

  • Werner Zellinger
  • Edwin Lughofer
  • Susanne Saminger-Platz
  • Thomas Natschläger
چکیده

The learning of domain-invariant representations in the context of domain adaptation with neural networks is considered. We propose a new regularization method that minimizes the domain-specific latent feature representations directly in the hidden activation space. Although some standard distribution matching approaches exist that can be interpreted as the matching of weighted sums of moments, e.g. Maximum Mean Discrepancy, an explicit order-wise matching of higher order moments has not been considered before. We propose to match the higher order central moments of probability distributions by means of order-wise moment differences. Our model does not require computationally expensive distance and kernel matrix computations. We utilize the equivalent representation of probability distributions by moment sequences to define a new distance function, called Central Moment Discrepancy (CMD). We prove that CMD is a metric on the set of probability distributions on a compact interval. We further prove that convergence of probability distributions on compact intervals w. r. t. the new metric implies convergence in distribution of the respective random variables. We test our approach on two different benchmark data sets for object recognition (Office) and sentiment analysis of product reviews (Amazon reviews). CMD achieves a new state-of-the-art performance on most domain adaptation tasks of Office and outperforms networks trained with Maximum Mean Discrepancy, Variational Fair Autoencoders and Domain Adversarial Neural Networks on Amazon reviews. In addition, a post-hoc parameter sensitivity analysis shows that the new approach is stable w. r. t. parameter changes in a certain interval. The source code of the experiments is publicly available1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Wasserstein Distance Guided Representation Learning for Domain Adaptation

Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, dom...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Cross-Modal Face Matching: Beyond Viewed Sketches

Matching face images across different modalities is a challenging open problem for various reasons, notably feature heterogeneity, and particularly in the case of sketch recognition – abstraction, exaggeration and distortion. Existing studies have attempted to address this task by engineering invariant features, or learning a common subspace between the modalities. In this paper, we take a diff...

متن کامل

DeMIAN: Deep Modality Invariant Adversarial Network

Obtaining common representations from different modalities is important in that they are interchangeable with each other in a classification problem. For example, we can train a classifier on image features in the common representations and apply it to the testing of the text features in the representations. Existing multi-modal representation learning methods mainly aim to extract rich informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017